BBA 73697

Lack of effects of calcium · calmodulin-dependent phosphorylation on Ca²⁺ release from cardiac sarcoplasmic reticulum

Hae Won Kim ^a, Do Han Kim ^{b,*}, Noriaki Ikemoto ^{b,c} and Evangelia G. Kranias ^a

^a Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (U.S.A.), ^b Department of Muscle Research, Boston Biomedical Research Institute, Boston, MA 02114 (U.S.A.) and ^c Department of Neurology, Harvard Medical School, Boston, MA 02115 (U.S.A.)

(Received 3 June 1987)

Key words: Phosphorylation; Protein kinase, calcium · calmodulin dependent; Sarcoplasmic reticulum; Calcium ion release; Stopped-flow fluorimetry; Rapid filtration method; (Canine heart)

Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium · calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca²⁺ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium · calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca²⁺ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca²⁺ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent ⁴⁵Ca²⁺—⁴⁰Ca²⁺ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium · calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca²⁺ release and ⁴⁵Ca²⁺—⁴⁰Ca²⁺ exchange.

Introduction

The calcium pump in cardiac sarcoplasmic reticulum (SR) appears to be regulated through

Abbreviations: EGTA, ethylene glycol bis(β -aminoethyl ether)-N, N, N', tetraacetic acid; Mes, 4-morpholineethane-sulfonic acid.

Correspondence: H.W. Kim, Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A.

phosphorylation of phospholamban, a 27 kDa polymeric proteolipid. Phospholamban is phosphorylated by cAMP-dependent protein kinase and this phosphorylation is associated with stimulation of the initial rates of Ca^{2+} transport and Ca^{2+} -ATPase activity by SR [1,2]. Phospholamban is also phosphorylated by an endogenous calcium calmodulin-dependent protein kinase on a site, which appears distinct form that phosphorylated by cAMP-dependent protein kinase [3,4]. Phosphorylation by the calcium calmodulin-dependent protein kinase is half-maximally stimulated by $3.8 \pm 0.3 \ \mu M$ calcium and it is absolutely dependent on exogenous calmodulin for

^{*} Present address: University of Connecticut, Health Center Department of Medicine, Division of Cardiology, Farmington, CT 06032 (U.S.A.)

activation (EC₅₀ = 49 nM) [5]. Calcium · calmodulin-dependent phosphorylation is also associated with an increased rate of Ca^{2+} transport [5,6]. The stimulatory effect of the protein kinases on Ca^{2+} transport may be reversed by a SR associated protein phosphatase, which can dephosphorylate both the cAMP-dependent as well as the calcium · calmodulin-dependent site on phospholamban [7,8]. Thus, phospholamban appears to be a regulator for the calcium pump in cardiac SR.

Although a considerable amount of evidence has been accumulated for the effects of phosphorylation on Ca²⁺-transport, very little is known about its effects on Ca²⁺ release from cardiac SR. It has previously been shown that cAMP-dependent phosphorylation of cardiac SR was associated with stimulation of Ca²⁺ efflux [9]. In the present study, we report that calcium calmodulin-dependent phosphorylation of SR has no appreciable effect on Ca²⁺ release from cardiac SR, loaded under passive conditions and on the apparent ⁴⁵Ca²⁺- ⁴⁰Ca²⁺ exchange from cardiac SR loaded under active conditions.

Methods

Preparation of sarcoplasmic reticulum vesicles. Sarcoplasmic reticulum was prepared from dog cardiac muscle and the purity of the preparations was evaluated by various enzyme marker assays, as we have described previously [10,11]. Mitochondrial contamination was 3-5%, sarcolemmal contamination was less than 10%, and cytosolic contamination was 0.2%.

Phosphorylation of cardiac sarcoplasmic reticulum. Calcium calmodulin-dependent phosphorylation of SR (0.5 mg/ml) was carried out, as previously described [4,12], at 30 °C in 50 mM potassium phosphate buffer (pH 7.0) containing 10 mM MgCl₂, 0.5 mM EGTA, 0.478 mM CaCl₂ (10 μ M free Ca²⁺), 1.0 μ M calmodulin (isolated from bovine testis [13]), and 0.5 mM [γ -³²P]ATP. Reactions were terminated by the addition of 7% cold perchloric acid containing 7% polyphosphoric acid. After addition of SR carrier protein (2.5 mg/ml reaction solution) the samples were washed, and the amounts of [³²P]P_i incorporated were determined as previously described [2]. Phos-

phate incorporation due to calcium calmodulindependent protein kinase has been characterized as a phosphoester bond based on its stability to hydroxylamine and NaOH; thus, this bond can easily be distinguished from the acylphosphate intermediate of the Ca²⁺-ATPase [4,12].

For investigation of the effects of phosphorylation on Ca²⁺ release, SR vesicles were phosphorylated under the same conditions as above using unlabeled ATP. The phosphorylation reaction was initiated by the addition of ATP. Nonphosphorylated vesicles were also incubated under identical conditions, but in the absence of ATP. After 2 min of incubation at 30°C, the reaction mixture was diluted 2-fold with ice-cold 20 mM Tris-maleate, 0.3 M sucrose (pH 7.0) (Buffer A), and centrifuged at $100\,000 \times g$ for 30 min. The pellet was resuspended in Buffer A, and the protein was determined by the method of Lowry et al. [14]. The conditions used for preincubation (phosphate buffer, MgCl₂, CaCl₂, EGTA, temperature, time of incubation) and subsequent washing of SR vesicles were found not to influence the rate of transport [5] or the levels of total Ca2+ accumulated and released. Vesicles, which were kept on ice (0°C), expressed the same amount of Ca²⁺ released as those exposed to the preincubation conditions described above. Thus, non-phosphorylated vesicles for this study were preincubated simultaneously with phosphorylated vesicles under identical conditions (including calmodulin) but in the absence of ATP to avoid phosphorylation.

Calcium release form passively loaded sarcoplasmic reticulum. Sarcoplasmic reticulum vesicles (5-10 mg/ml) in 0.3 M sucrose, 0.1 M KCl, 20 mM Tris-maleate (pH 7.0) were passively loaded with 5 mM CaCl₂ by preincubation for 5-6 h at 4°C. The Ca²⁺-loaded SR (0.06 mg/ml) was then incubated in 0.15 M KCl, 20 mM Mes (pH 6.8), 5 mM CaCl₂, and 20 µM chlorotetracycline at 20 °C for 20 min (Syringe A). Calcium release was induced by mixing (1:1) the contents of syringe A with the contents of syringe B, which contained 0.15 M KCl, 20 mM Mes (pH 9.3), 20 µM chlorotetracycline, and various concentrations of EGTA to measure changes in fluorescence intensity as indicator of Ca2+ release (excitation, 395 nm; emission, 510 nm) [15-18]. The final pH after mixing was 6.8. The initial rate of Ca²⁺ release was calculated from the initial slope of the Ca²⁺ release curves.

To correlate changes in fluorescence intensity with the amount of Ca²⁺ release, the time-course of Ca²⁺ release was monitored using the rapid filtration apparatus (Bio-Logic Co., Zisrst, 38240 Meylan, France) [19]. Sarcoplasmic reticulum vesicles, which were loaded with 5 mM ⁴⁵CaCl₂ as described above, were diluted with 5 mM CaCl₂ and about 0.2 mg of the SR vesicles were placed on a Millipore filter (pore size, 0.65 μm). Calcium release was started by flow of a solution containing 20 mM Mes (pH 6.8), 0.15 M KCl, 5 mM CaCl₂ and 5.56 mM EGTA and at various times the release was terminated by stopping flow of the solution. The filters were dried and the radioactivity on the filters was counted by liquid scintillation counting.

Calcium release from actively loaded sarcoplasmic reticulum. Calcium efflux was measured by a modification of the Millipore filtration technique of Martonosi and Feretos [20]. The reaction mixture consisted of 20 mM Mes (pH 6.8), 0.15 M KCl, 2 mM MgCl₂, 10 mM NaN₃, 0.12 mM ⁴⁵CaCl₂ (10⁴ cpm/nmol), and 0.26 mM EGTA $(0.37 \,\mu\text{M} \text{ free Ca}^{2+})$. Phosphorylated or non-phosphorylated SR vesicles (0.05 mg/ml) were preincubated at 37°C for 1 min in the above buffer. The reaction was initiated by addition of ATP (2) mM final) and incubation continued for 9.5 additional min. Calcium efflux was measured by two different procedures. In the first procedure, CaCl₂ or 45 CaCl, was added to give the desired free Ca²⁺ concentration as calculated by a computer program [21]. Addition of CaCl₂ did not result in any significant pH changes under the present experimental conditions. At certain intervals thereafter, 0.5 ml aliquots of the reaction mixture were rapidly filtered through 0.45 µm pore size Millipore filters. The filters were immediately washed with 20 ml of 20 mM Mes (pH 6.8) containing 0.15 M KCl, 30 mM EGTA, and 15 μM ruthenium red (washing buffer). In the second procedure, calcium efflux was assayed under conditions which prevented ATP-dependent calcium uptake (i.e., in the absence of Mg²⁺ and ATP). An aliquot (0.2 ml) of SR vesicles, loaded with calcium as described above, was filtered through a 0.45 µm

Millipore filter followed by either two 10-s rinses (10 ml) with washing buffer, which inhibited ⁴⁵Ca²⁺ efflux, or one 10-s rinse (5 ml) with 20 mM Mes (pH 6.8), 0.15 M KCl, 0.26 mM EGTA, and 0.213 mM ⁴⁰CaCl₂ or ⁴⁵CaCl₂ (2 μ M free Ca²⁺), which promoted ⁴⁵Ca²⁺ efflux, followed by two 10-s rinses (10 ml) with washing buffer. After drying, the radioactivity retained on the filters was counted in 10 ml of Budget-Solve liquid scintillation cocktail (Research Products International Corp.) using a Beckman model LS 8100 liquid scintillation counter.

Miscellaneous. Calcium content of all solutions was determined by atomic absorption spectroscopy using a Perkin-Elmer 4000 atomic absorption spectrophotometer. Calcium-EGTA buffers contained various concentrations of EGTA and CaCl₂. Free Ca²⁺ concentrations at pH 6.8 were based upon the EGTA association constants reported by Martell and Smith [22] and they were calculated by the use of a computer program [21]. When the final Ca²⁺ concentration used to induce Ca²⁺ release was calculated, the amount of Ca²⁺ depletion in the medium due to Ca²⁺ transport was taken into consideration.

Results

Stability of the phosphoprotein

To study the effects of calcium calmodulindependent phosphorylation on Ca2+ release, cardiac SR vesicles were phosphorylated under optimal conditions, in the presence of 10 µM Ca^{2+} ($C_{1/2}$: 3.8 ± 0.3 μ M) and 1 μ M calmodulin $(C_{1/2}: 49 \text{ nM})$. Phosphorylation occurred mainly (over 90%) on phospholamban, a 27 kDa polymeric proteolipid, which upon boiling in sodium dodecyl sulfate migrated as a 9000-11000 M. phosphoprotein in sodium dodecyl sulfate gels [8]. Other minor phosphoproteins formed by the calcium · calmodulin-dependent protein kinase had molecular masses of 45 and 55 kDa. In order to investigate the effects of calcium · calmodulindependent phosphorylation of SR on Ca2+ release, it is essential to determine whether or not the level of phosphoprotein is maintained throughout the course of Ca2+ release experiments. It was found that the level of phosphoprotein (1556 \pm 127 pmol/mg SR: 100 \pm 3%; n=4) formed by the calcium calmodulindependent protein kinase was stable $(88 \pm 5\%)$ during the washing of the phosphorylated SR. The phosphoprotein levels also remained stable during active Ca^{2+} loading with Mg-ATP at 37°C and subsequent Ca^{2+} efflux assays $(87 \pm 3\%; n=3)$ as well as during passive Ca^{2+} loading, in 5 mM Ca^{2+} for 5 h at 4°C $(85 \pm 1\%; n=3)$. Thus, it appears that the phosphoprotein levels were well maintained throughout the course of Ca^{2+} release experiments.

Effect of phosphorylation on Ca²⁺ release after passive loading

Passive Ca²⁺ loading was completed within 5 h of incubation with ⁴⁵Ca²⁺ at 4°C. The calcium calmodulin-dependent phosphorylation did not have any appreciable effect on the level of Ca²⁺ loading (data not shown). To induce Ca²⁺ release cardiac SR vesicles, loaded with 5 mM ⁴⁵Ca²⁺, were mixed rapidly with a solution containing various concentrations of EGTA or EGTA-CaCl₂

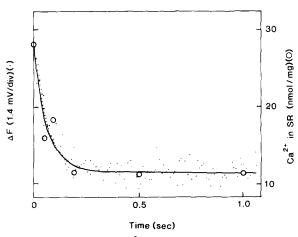


Fig. 1. Time-course of Ca^{2+} release, from passively loaded cardiac sarcoplasmic reticulum (SR) vesicles, monitored by stopped-flow fluorometry using chlorotetracycline (CTC) $(\cdots\cdots)$ and rapid filtration method using 45 Ca (\bigcirc) . Cardiac SR vesicles (5–10 mg/ml) were passively loaded with 5 mM $CaCl_2$ for 5–6 h at 4°C. For stopped-flow fluorometry Ca^{2+} loaded SR (0.06 mg/ml) was incubated in 0.15 M KCl, 20 mM Mes (pH 6.8), 5 mM $CaCl_2$, and 20 mM CTC at 20 °C for 20 min. Calcium release was induced by addition of EGTA to make 2 μ M free Ca^{2+} . Calcium release was also induced by the rapid filtration method [19] as described under Methods and each point represents the average of two separate experiments

mixture to create various [Ca²⁺]_{final}. The timecourse of Ca2+ release was then monitored by two different methods: stopped-flow fluorometry using chlorotetracycline (CTC), as an indicator of the intravesicular Ca²⁺ [15-18], and a rapid filtration method using 45 Ca2+ [19]. As seen in Fig. 1, the time-courses of Ca2+ release obtained by stopped-flow fluorometry and rapid Ca2+ filtration were similar in nature. Fig. 2 illustrates plots of pCa (Ca²⁺_{final}) vs. the initial rates of Ca²⁺ release determined by the fluorometric method. A 'bellshaped' [Ca²⁺]-dependence curve was observed and it was essentially the same as that of Ca2+ release in skeletal muscle SR [23]. An increase of $[Ca^{2+}]_{final}$ from 0.55 to 2.2 μM increased the Ca²⁺ release rates in the non-phosphorylated SR, while further increase of [Ca²⁺]_{final} decreased the rate (Fig. 2). However, even the maximum Ca²⁺ release rate obtained was much lower than that which occurs in vivo [24]. The basis for the reduced rates of Ca²⁺ release, which are observed in vitro [9,25], is not presently known but it may be due to assay conditions or possible loss of essential components from the system as previously suggested [25]. Calcium · calmodulin-dependent phosphorylation had no significant effect on the

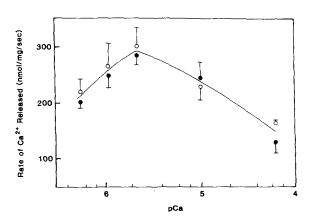


Fig. 2. The initial rates of Ca^{2+} release from passively loaded cardiac sarcoplasmic reticulum (SR) vesicles at various free Ca^{2+} concentrations. Cardiac SR vesicles were passively loaded with calcium and treated as described in Fig. 1. Calcium release, monitored by stopped-flow fluorometry, occurred at final Ca^{2+} concentration of: $0.55 \, \mu M \, (n=3), 1.1 \, \mu M \, (n=5), 2.2 \, \mu M \, (n=6), 8.0 \, \mu M \, (n=3)$ and $63 \, \mu M \, (n=2)$. Each value represents the mean of n paired experiments \pm S.E. for phosphorylated (\bigcirc) SR.

initial rates of Ca²⁺ release and the extent of the [Ca²⁺]-activation of Ca²⁺ release appeared to be the same in the phosphorylated and non-phosphorylated SR. Thus, these findings on the passively loaded vesicles suggest that phosphorylation of cardiac SR had no apparent effect on Ca²⁺ release.

Effect of phosphorylation on Ca²⁺ efflux after active loading

Active Ca^{2+} transport by SR vesicles at $[Ca^{2+}]_0$ of 0.37 μ M was completed within a few minutes, and the steady-state level of transport was sustained for more than 10 min (Fig. 3). Calcium calmodulin-dependent phosphorylation of the SR membranes resulted in an increase of the initial rates of Ca^{2+} transport and an increase in the Ca^{2+} levels accumulated. However, the stimulatory effect observed in this study was obtained in

the absence of a Ca2+ precipitating anion, and it was small compared to previous reports in which oxalate was used [5,8]. An abrupt change of the calcium concentration in the media, from $0.37 \mu M$ to 2 µM by addition of 40 CaCl₂, induced Ca²⁺ efflux, which was completed within 30 s in both phosphorylated and non-phosphorylated SR vesicles (Fig. 3). The level of Ca²⁺ efflux from phosphorylated SR vesicles $(6.8 \pm 0.5 \text{ nmol/mg})$; n = 6) was significantly larger than that from non-phosphorylated SR vesicles $(5.3 \pm 0.6 \text{ nmol/})$ mg; n = 6) but the fraction of 45 Ca²⁺ efflux (level of Ca2+ efflux/level of Ca2+ loaded) from phosphorylated and non-phosphorylated SR vesicles was similar (Fig. 3, inset). Furthermore, when the relative 45 Ca2+ efflux was obtained as a function of the final calcium concentration after the 40 Ca2+ jump, there was no appreciable difference between the phosphorylated and non-phosphorylated SR

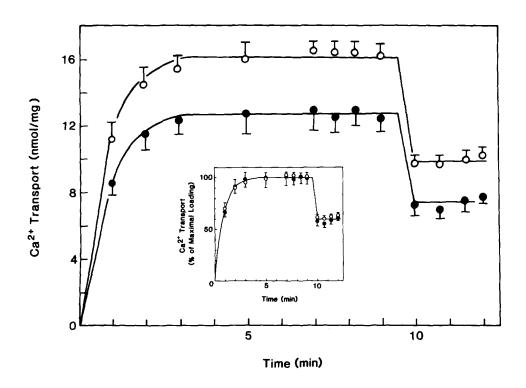


Fig. 3. Time-course of Ca²⁺ transport and release by phosphorylated and non-phosphorylated cardiac sarcoplasmic reticulum (SR) vesicles. Cardiac SR vesicles were prephosphorylated by calcium calmodulin-dependent protein kinase (O). Non-phosphorylated vesicles (•) were treated under identical conditions but in the absence of ATP. SR vesicles (0.05 mg/ml) were assayed for calcium transport (0.26 mM EGTA/0.12 mM ⁴⁵CaCl₂; 0.37 μM free Ca²⁺) as described under Methods. At 9.5 min 92.2 μM CaCl₂ was added (2 μM final Ca²⁺). Each value represents the mean of six paired experiments ± S.E. Inset. Ca²⁺ transport values are expressed as percent of maximal loading for phosphorylated (O) and non-phosphorylated (•) cardiac SR vesicles, respectively.

preparations, in both the relative amount and the $[Ca^{2+}]$ -dependence of $^{45}Ca^{2+}$ efflux (Fig. 4).

The level of active Ca²⁺ loading is inevitably higher in the phosphorylated SR than the nonphosphorylated SR if the reaction is carried out under the same conditions as described above. In order to achieve the same level of Ca2+ loading, therefore, we carried out the active Ca²⁺ transport reaction at 0.37 µM Ca2+ for the phosphorylated SR and at 0.63 µM Ca²⁺ for the non-phosphorylated SR (amount of Ca^{2+} loaded: 15.3 ± 0.6 vs. 15.6 ± 0.6 nmol Ca²⁺/mg for non-phosphorylated vs. phosphorylated SR; n = 3). The calcium concentration was then increased to 2 µM in both preparations to induce 45 Ca2+ efflux. The level of ⁴⁵Ca²⁺ efflux was about the same for non-phosphorylated $(5.0 \pm 0.6 \text{ nmol Ca}^{2+}/\text{mg})$ and phosphorylated SR (5.7 \pm 1.2 nmol Ca²⁺/mg).

The apparent ⁴⁵Ca²⁺ efflux induced by a ⁴⁰Ca²⁺ jump was not observed when ⁴⁵CaCl₂ was used to induce the efflux of calcium from SR vesicles. The lack of any observable ⁴⁵Ca²⁺ efflux could be either due to increased ATP-dependent Ca²⁺ uptake or due to ⁴⁵Ca²⁺ exchange. To distinguish between these possibilities, vanadate (sodium vanadate, ortho, from Fischer) was added to the Ca²⁺ transport assay, after loading of the

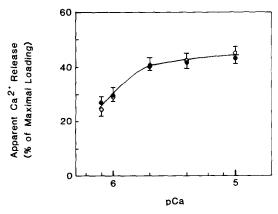


Fig. 4. Calcium release from actively loaded cardiac sarcoplasmic reticulum (SR) vesicles, at various free Ca²⁺ concentrations. The conditions for phosphorylation and transport are the same as in Fig. 3. At 9.5 min, CaCl₂ was added, and final concentrations were: 0.8 μ M, 1 μ M, 2 μ M, 4 μ M and 10 μ M. Each value represents the mean of three paired experiments \pm S.E. for phosphorylated (\odot) and non-phosphorylated (\odot) SR vesicles.

SR vesicles (at 9 min), at a concentration (100 μ M) which inhibits the Ca²⁺-ATPase activity by over 70%. Addition of vanadate had no effect on the levels of ⁴⁵Ca²⁺ associated with the SR vesicles following the ⁴⁵Ca²⁺ jump, suggesting that the lack of observable ⁴⁵Ca²⁺ efflux was not due to increased ATP-dependent Ca²⁺ uptake. This was further supported by filtration experiments in which calcium efflux was induced by ⁴⁵Ca²⁺ in the absence of Mg²⁺ and ATP to prevent ATP-dependent Ca²⁺ uptake (second procedure above). The levels of ⁴⁵Ca²⁺ remaining in these SR vesicles were similar when the ⁴⁵Ca²⁺ jump occurred in the absence or presence of Mg²⁺ and ATP, which would support ATP-dependent Ca²⁺ uptake.

From these findings, it is tentatively suggested that the apparent ⁴⁵Ca²⁺ efflux, observed upon a ⁴⁰Ca²⁺ jump under the active-loading conditions, is due to ⁴⁵Ca²⁺–⁴⁰Ca²⁺ exchange (see Discussion). Thus, it appears that the apparent exchange reaction as well as Ca²⁺ release are not affected by calcium calmodulin-dependent phosphorylation of cardiac SR.

Discussion

Previously, Kirchberger and Wong [9] reported that cAMP-dependent phosphorylation increased the rates of Ca2+ released from cardiac SR. In that study, Ca2+ release was induced from Ca2+loaded SR vesicles in the presence of oxalate or phosphate. In the present study, the effects of calcium · calmodulin-dependent phosphorylation were studied using SR vesicles preloaded with Ca²⁺ under active or passive conditions in the absence of any Ca2+ precipitating anions. Phosphorylation did not increase the rates of Ca²⁺ release from cardiac SR vesicles loaded with Ca²⁺ under passive conditions and there was no appreciable difference in the [Ca²⁺]-dependence between phosphorylated and non-phosphorylated SR vesicles. The reason for the discrepancy between previous reports and the present results is not clear, but it might be due to differences in the sites phosphorylated by the cAMP-dependent versus the calcium · calmodulin-dependent protein kinases and in reaction conditions, e.g., presence or absence of Ca2+ precipitating anions.

As demonstrated here, the actively loaded

⁴⁵Ca²⁺ was released by a Ca²⁺ jump using ⁴⁰Ca²⁺, whereas no appreciable ⁴⁵Ca²⁺ release was observed if the same type of Ca2+ jump was performed using 45 Ca2+. The possibility that this might represent rapid reuptake of the released ⁴⁵Ca²⁺, due to activation of the Ca²⁺ pump by the increase of [Ca²⁺], was excluded by the findings that conditions (addition of the transport inhibitor vanadate or removal of Mg ATP by filtration), which would prevent reuptake of calcium, had no effect. Thus, it appears that the 40Ca²⁺ jump-induced 45 Ca2+ release, shown in the experiments of Fig. 3, actually represents a 45Ca²⁺-40Ca²⁺ exchange. However, because of the rather low kinetic resolution of the assay method for release of actively loaded 45Ca2+, it is possible that a rapid ⁴⁵Ca²⁺ release preceded a slow Ca²⁺-Ca²⁺ exchange but it was not detectable in this study. Furthermore, since the amount of apparent Ca²⁺-Ca²⁺ exchange (6-7 nmol Ca²⁺/mg) is of the same order of magnitude as Ca2+ binding to the Ca²⁺-ATPase [26,27] it is also possible that, in the ⁴⁵Ca²⁺ jump experiments, ⁴⁵Ca²⁺ release may have been hindered by binding of an additional amount of ⁴⁵Ca²⁺ to the Ca²⁺-ATPase. Thus, although there was no observable release of the actively loaded ⁴⁵Ca²⁺ in the ⁴⁵Ca²⁺ jump experiments, it is likely that ⁴⁵Ca²⁺ release occurred but it was hindered by other processes such as exchange of the intravesicular with the extravesicular Ca²⁺ under the active loading-release conditions. In fact, previous reports in skinned fibers indicated that a Ca2+ jump could induce Ca2+ release from cardiac SR [28,29].

Recently, calcium · calmodulin-dependent phosphorylation of a 60 kDa protein of the skeletal muscle SR was shown to decrease the Ca²⁺ release rates [18]. This effect of calcium · calmodulin-dependent phosphorylation is different from the one reported here on cardiac SR, in which phosphorylation occurs mainly on phospholamban. Phosphorylation of cardiac SR by the calcium · calmodulin-dependent protein kinase was associated with increased levels of Ca²⁺ efflux from the cardiac SR. This increase was due to the increased amount of Ca²⁺ transported by phosphorylation of cardiac SR and it may mislead one to the conclusion that phosphorylation might activate Ca²⁺ release [30].

Previously, it was shown that inclusion of calmodulin in the Ca2+ release assays resulted in reduction of the rates of Ca2+ release and it was suggested that the effect of calmodulin was mediated by its direct interaction with SR and did not involve protein phosphorylation [31]. In the present study, calmodulin was present in the preincubation reaction for both non-phosphorylated and phosphorylated SR. However, the amounts of calmodulin remaining with the washed SR vesicles during Ca2+ release assays were less than 700 ng/mg of SR, or less than 2 nM calmodulin, as determined by radioimmunoassay [5]. This concentration of calmodulin is almost 1000-fold lower than that previously reported to directly affect Ca²⁺ release by cardiac SR.

Therefore, in contrast to the stimulatory effect of calcium calmodulin-dependent phosphorylation of cardiac SR on the Ca²⁺ pump, phosphorylation had no appreciable effect on the kinetics of calcium release from vesicles passively loaded with ⁴⁵Ca²⁺. It had no effect on release of actively loaded ⁴⁵Ca²⁺, induced by a ⁴⁰Ca²⁺ jump, either. However, when ⁴⁵Ca²⁺ was used to produce the calcium jump, there was no appreciable release indicating that rather complicated processes, such as Ca²⁺-Ca²⁺ exchange are involved under active loading conditions. The present results suggest that calcium calmodulin-dependent phosphorylation of SR is not involved in the regulation of the putative Ca²⁺ channels [25,31].

Acknowledgments

This work was supported by National Institutes of Health Grants HL 26057, HL 22619 and AM 16922.

References

- Kirchberger, M.A., Tada, A. and Katz, A.M. (1974) J. Biol. Chem. 249, 6166-6173
- 2 Kranias, E.G., Mandel, F., Wang, T. and Schwartz, A. (1980) Biochemistry 19, 5434-5439
- 3 LePeuch, C.L., Haiech, J. and DeMaille, J.G. (1979) Biochemistry 18, 5150-5157
- 4 Bilezikjian, L.M., Kranias, E.G., Potter, J.D. and Schwartz, A. (1981) Circ. Res. 49, 1356-1362
- 5 Davis, B.A., Schwartz, A., Samaha, F.J. and Kranias, E.G. (1983) J. Biol. Chem. 258, 13587-13591

- 6 Kirchberger, M.A. and Antonetz, T. (1982) J. Biol. Chem. 257, 5685-5691
- 7 Kirchberger, M.A. and Raffo, A. (1977) J. Cyclic Nucleotide Res. 3, 45-53
- 8 Kranias, E.G. (1985) J. Biol. Chem. 260, 11006-11010
- 9 Kirchberger, M.A. and Wong, D. (1978) J. Biol. Chem. 253, 6941–6945
- 10 Kranias, E.G., Schwartz, A. and Jungmann, R.A. (1982) Biochim. Biophys. Acta 709, 28-37
- 11 Harigaya, S. and Schwartz, A. (1969) Circ. Res. 25, 781-794
- 12 Kranias, E.G., Bilezikjian, L.M., Potter, J.D., Piascik, M.T. and Schwartz, A. (1980) Ann. N.Y. Acad. Sci. 356, 279-291
- 13 Gopalakrishna, R. and Anderson, W.B. (1982) Biochem. Biophys. Res. Commun. 104, 830-836
- 14 Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275
- 15 Fabiato, A. and Fabiato, F. (1979) Nature 281, 146-148
- 16 Caswell, A.H. and Brandt, N.R. (1981) J. Membrane Biol. 58, 21-33
- 17 Nagasaki, K. and Kasai, M. (1983) J. Biochem. 94, 1101-1109
- 18 Kim, D.H., and Ikemoto, N. (1986) J. Biol. Chem. 261, 11674-11679

- 19 Dupont, Y. (1984) Anal. Biochem. 142, 504-510
- 20 Martonosi, A. and Feretos, R. (1964) J. Biol. Chem. 239, 648-658
- 21 Robertson, S. and Potter, J.D. (1984) Methods Pharmacol. 5, 63-75
- 22 Martell, A.E. and Smith, R.M. (1974) in Critical Stability Constants, Vols. 1-4, pp. 269-272, Plenum Press, New York
- 23 Kim, D.H., Ohnishi, S.T. and Ikemoto, N. (1983) J. Biol. Chem. 258, 9662-9668
- 24 Meissner, G. (1983) Mol. Cell. Biochem. 55, 65-82
- 25 Chamberlain, B.K., Volpe, P. and Fleischer, S. (1984) J. Biol. Chem. 259, 7540-7546
- 26 Kiemoto, N. (1982) Annu. Rev. Physiol. 44, 297-317
- 27 Inesi, G. (1985) Annu. Rev. Physiol. 47, 573-601
- 28 Fabiato, A. (1982) Fed. Proc. 41, 2238-2244
- 29 Fabiato, A. (1983) Am. J. Physiol. 245, C1-C14
- 30 Kim, H.W., Kim, D.H., Ikemoto, N. and Kranias, E.G. (1986) Biophys. J. 49, 235a
- 31 Meissner, G. and Henderson, J.S. (1987) J. Biol. Chem. 262, 3065-3073